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In this paper, a methodology to estimate the Markovian transition probability model is presented
to forecast the deterioration process of bridge components. The deterioration states of the bridge
components are categorized into several ranks, and their deterioration processes are characterized
by hazard models. The Markovian transition probabilities between the deterioration states which
are deåned for the åxed intervals between the inspection points in time, are described by the
exponential hazard models. The applicability of the estimation methodology presented in this
paper is investigated by the empirical data set of steel bridges in New York city.
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1. INTRODUCTION

A major problem in bridge asset management
consists in ånding an optimal repair strategy that
minimizes life cycle cost. Predictions on repair
demands of the bridge in future times also have
to be made along with appropriate budget plans
that cover maintenance and repair requirements.
Estimations of both life cycle cost and repair de-
mands heavily rely on deterioration forecasting
models.

In order to forecast the deterioration progress
of a bridge component two types of models have
been proposed: 1) a statistical deterioration
model based on past visual inspection results, and
2) a deterioration model based on dynamical me-
chanics. The selection of one model over the other
should be determined according with the pur-
poses of the problem. For example, the former
model is preferred when maintenance strategies
and budget management policies for the whole

infrastructure assets have to be deåned. On the
other hand, when estimating remaining life time
or determining an optimum repair tactic for a
concrete damaged member is the main purpose, a
deterioration model based on dynamical mechan-
ics is likely to be more eãective. In some cases,
however, this model requires too many indeånite
factors so there is no choice but to use a statistical
model.

A Markov chain model is a statistical model
used to forecast the deterioration progress of a
bridge component. In this model, a rank order as
results of visual inspections represents the condi-
tion state of the component, and Markov transit
on probabilities are estimated to characterize the
deterioration progress between two consecutive
states. The Markov chain model is advantageous
to çexibility of modeling and high operability. It
was årstly introduced in American standard ap-
plications such as PONTIS and it is now used
in many other bridge management systems. In
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many of these applications, the Markov transition
probabilities are simply estimated using the rela-
tive transition frequency of the condition states,
which is determined based on the results of visual
inspections carried out at several times. However,
there are many cases in which the information ob-
tained from visual inspections does not make ref-
erence to diãerences in the structural characteris-
tics of bridges, environmental conditions or even
time intervals between inspections, compromising
the accuracy of the Markov transition probability
estimations.

In this research, a methodology for estimating
the Markov transition probabilities for the dete-
rioration of bridge components is proposed. It
is based on the condition states ranks that re-
sult from visual inspections. The Markov transi-
tion probabilities are estimated after characteriz-
ing the deterioration process of each bridge com-
ponent by hazard models. In Section 2. the
fundamental of this research is brieçy explained.
The Markov transition probability model based
on hazard models is formulized in Section 3. In
Section 4. a methodology for estimating Markov
transition probabilities is described. Finally, an
application example is explained in Section 5.

2．FUNDAMENTALS

(1) Outline of the research

Among the vast literature related to deteriora-
tion forecasting, Kaito et al.1) discuss a methodol-
ogy to calculate the average deterioration curve of
New York City bridges considering deterioration
speeds. The deterioration speeds are obtained
by using visual inspection data, and are then re-
lated with random variables so as to estimate a
Markov process that reçects the past inspection
data history. Other authors 2)Ä7) have devel-
oped models based on dynamical mechanics to
forecast the deterioration of bridge components.
However, statistical deterioration models remain
in early stages and there are still many problems
that compromise the reliability of its results. Ad-
ditionally, some researches have also been made
in relation to Markov transition probability es-
timations. Among them, Lee et al. 8) estimate
Markov transition probabilities between two con-
dition states based on aggregate time series data.
Although the methodology described in this re-
search is simple to implement, it has the limita-
tion that it cannot reçect the inçuence of diãerent
structural characteristics of each bridge compo-
nent or its external conditions in the deteriora-
tion process. Concerned with this problem, this

paper describes the deterioration process of each
bridge component by means of a hazard model,
which is based on visual inspection results. The
hazard model was årstly developed in the åeld of
reliability analysis to predict the life expectancy
of facilities and machines, and since then, it has
been applied and reported in many other åelds.
Detailed descriptions of hazard model estimation
methods have been already compiled 9);10). In the
åeld of asset management for example, Shin and
Madanat 11) propose a Weibull deterioration haz-
ard model to predict the time in which road pave-
ment cracking initiates. However, in the tradi-
tional hazard model applied to facilities and ma-
chines, the deterioration state is expressed only
by two values that deåne whether a failure exists
or not. Therefore, it cannot be applied for bridge
deterioration forecasting in which various condi-
tion states need to be handle at the same time.
A multi destination type hazard model that con-
siders various possible states following a transi-
tion has been proposed9). In a Markov transition
probability that assumes a multi destination haz-
ard model the transition from a given state to
only one among mutually exclusive states occurs.
However this hazard model can not be applied to
deterioration of bridge components, since the con-
dition state of them is irreversibly getting worse
with deterioration progress. This research pro-
poses a methodology to describe the transition
process between two adjacent deterioration state
ranks, related each other with a perpendicular
transition, by using exponential hazard models.
In addition, a methodology based on estimations
of hazard models to estimate Markov transition
probabilities that describe the deterioration pro-
cess of bridge components is developed. That is,
this research proposes a two steps methodology:
the årst step estimates, in a disaggregate way, the
Markov transition probabilities that describe the
condition states of each bridge component, and
then using the previous results, the second step
estimates the Markov transition probabilities de-
scribing the average deterioration process of the
bridge components as a whole.

(2) Condition state and periodical
inspection scheme

In order to estimate a model to forecast the de-
terioration of bridge components it is necessary
to accumulate time series data on the condition
states of the components. The historical deterio-
ration process of a bridge component is described
in Fig.1. This ågure shows the deterioration
progress of a component that has not been re-
paired yet. In reality, there exists uncertainty in
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Note)　 In this example, the deterioration pro-
cess of a bridge component is expressed in terms
of the calendar time ú1; ú2; . . . ; úi, and the condi-
tion state of the component is increased in unitary
units.

Fig. 1　Timely transition of the condition state.

the deterioration progress of the component, and
moreover, the condition state at each point in the
time axis is restricted by the time the visual in-
spection was carried out. In this ågure, ú repre-
sents real calendar time (the expression‘time' will
be used instead throughout this paper). The de-
terioration of the bridge starts immediately after
it is opened to the public at time ú0. The condi-
tion state of a component is expressed by a rank J
representing a state variable i (i = 1;ÅÅÅ; J). For
a component in the sound condition, its condition
state is given as i = 1, and increasing of condi-
tion state i describes progressing deterioration.
A value of i = J indicates that a component has
reached its service limit. In Fig.1 for each dis-
crete time úi (i = 1;ÅÅÅ; J Ä 1) on the time-axis
the corresponding condition state has increased
from i to i + 1．Hereinafter úi is referred to the
time a transition from a condition state i to i+1
occurs.
Information regarding the deterioration process

of a bridge can be acquired through periodical
visual inspections. However, information on the
condition state based on continuous visual inspec-
tion is diécult to acquire. In this case, two peri-
odical inspections at timesúA and úB on the time-
axis are considered. It is supposed that at time
úA the condition state observed by inspection is
i (i = 1;ÅÅÅ; JÄ1). The deterioration progress in
future times is uncertain. Among the inånite set
of possible scenarios describing the deterioration
process only one path is ånally realized. Fig.2
shows four possible sample paths. Path 1 shows
no transition in the condition state i during a pe-
riodical visual inspection interval. In paths 2 and
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Note) In this example, the deterioration process
of a bridge component is expressed in terms of
four diãerent sample paths. In paths 2 and 3
the condition state has advanced to one upper
state condition at the calendar times ú2i and ú

3
i

respectively. In path 4, the condition state has in-
creased one state at each time ú4i and ú

4
i+1. How-

ever, in the case of a periodical inspection carried
out at times úA and úB the condition state at any
point in time between inspections cannot be ob-
served. The time length between two inspections
is expressed by Z.

Fig. 2　Periodical inspection scheme of the
condition state.

3 the condition state has advanced to one upper
state condition at the calendar timesú2i andú

3
i re-

spectively. The condition state of these two paths
observed at time úB become i + 1. In a periodi-
cal inspection scheme, the point times ú2i and ú

3
i

in which the condition state has changed from i
to i + 1 are not determined. In addition, path 4
shows transitions in the condition state at times
ú4i and ú

4
i+1 during the inspection interval. The

condition state observed at time úB becomes i+2.
That is, in spite the transitions in the condition
state are observable at the time of periodical in-
spection, it is not possible to obtain information
about the times in which those transitions occur.

(3) Markov transition probability

The transition process of the condition state for
a bridge component is uncertain and forecasting
future states cannot be accomplished determinis-
tically. The Markov transition probability is used
to represent the uncertain transition of the con-
dition state of a component during two points in
time. As explained later in Section 3.(4), Markov
transition probabilities can be deåned for arbi-
trary time intervals. For simplify, Markov transi-
tion probabilities are deåned to forecast the de-
terioration of a bridge component using the peri-
odical inspection scheme shown in Fig.2. The
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observed condition state of the component at
time úA is expressed by using the state variable
h(úA). If the condition state observed at time
úA is i, then the state variable h(úA) = i. A
Markov transition probability, given a condition
state h(úA) = i observed at time úA, deånes the
probability that the condition state at a future
time (úB for example) will change to h(úB) = j.
That is

Prob[h(úB) = jjh(úA) = i] = ôij (1)

The Markov transition probabilities matrix can
be deåned by using the transition probabilities
between each pair of condition states (i; j) as

Ö =

0B@ ô11 ÅÅÅ ô1J
...

. . .
...

0 ÅÅÅ ôJJ

1CA (2)

The Markov transition probability (1) shows
the transition probability between the condition
states at two given times úA and úB , therefore,
it is straightforward that the values of a transi-
tion probability diãer for diãerent time intervals.
Since deterioration continues as long as no repair
is carried out ôij = 0 (i > j). From the deånition
of transition probability

PJ
j=1ôij = 1. Then, it

holds for the Markov transition probability

ôij ï 0
ôij = 0 (when i > j)PJ
j=1ôij = 1

9>=>; (3)

The highest level of deterioration is expressed by
the condition state J , which remains as an ab-
sorbing state in the Markov chain as long as no
repair is carried out. In this case ôJJ = 1.

Markov transition probabilities are deåned in-
dependently of the past deterioration history. As
shown in Fig.2, the condition state at the in-
spection time úA is i but the time in which the
condition state changed from i Ä 1 to i is unob-
servable. However, in a Markov transition prob-
abilities model this does not have to be taken
into account, on the contrary, it is assumed that
the transition probability between the inspection
times úA and úB is only dependent on the condi-
tion state at time úA so as to satisfy its Markov
property. The Markov transition probabilities
model is highly operative. It can be used to ex-
amine asset management strategies at the macro
level in which deterioration forecasting and repair
strategies of a group of bridges are attained.

3. DISAGGREGATE MARKOV

TRANSITION PROBABILITIES

(1) Formulation of hazard model
The Markov transition probability (1) can be

deåned by using a hazard model representing the
deterioration process of an individual component.
The information obtained by visual inspection
contains not only data on the condition state of
an individual component, but also disaggregate
data speciåc to the component such as the struc-
tural characteristics or the bridge usage condi-
tions for example. The inspection intervals may
also diãer from one bridge to another. In or-
der to estimate Markov transition probabilities
based on such a variety of data, it is desirable
to develop an estimation methodology that can
consider speciåc characteristics of each individ-
ual component. In this research 1) the hazard
model for the deterioration of a bridge compo-
nent based on speciåc information is estimated,
and using these results 2) a two steps methodol-
ogy to estimate Markov transition probabilities is
proposed. The purpose of the hazard model is to
determine the transition probabilities that char-
acterize the deterioration process of each bridge
component. Markov transition probabilities de-
termined by means of hazard models are referred
as disaggregate Markov transition probabilities.
The methodology to obtain the average transition
probability for the whole of bridge components is
later explained in Section 4.(3)．
The deterioration process of a given bridge

component can be formulized using the hazard
model. In this section, the hazard model is brieçy
introduced in order to clarify some basic concepts.
For more detailed descriptions readers are sug-
gested to look at the references 9);10)．For the
deterioration process of a bridge component as
illustrated in Fig.3 it is assumed that the condi-
tion state at the calendar time úiÄ1 has changed
from i Ä 1 to i. The calendar time úiÄ1 is as-
sumed to be the origin yi = 0 of the time axis,
referred in this paper as the sample time-axis.
The time represented by the sample time-axis
is referred from now as a‘time point' and dif-
fers from‘time' on the calendar time axis. The
times úA and úB correspond to the time points yA
and yB on the sample axis. It can be seen that
yA = úA ÄúiÄ1, yB = úB ÄúiÄ1．Information on
the condition state i at the beginning of the calen-
dar time úiÄ1 cannot be obtained in a periodical
inspection scheme. Therefore, time points yA and
yB on the sample time-axis cannot be correctly
obtained either. For convenience of description,
it is assumed that the information at the time
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Note) In the case the condition state changes from
i Ä 1 to i at the calendar time úiÄ1 the inspec-
tions carried out at times úA and úB will also
correspond to the points in time yA and yB when
using úiÄ1 as the time origin. The ågure shows a
sample deterioration path in which the condition
state has advanced in one unit to yc in the interval
time úiÄ1-yC . However, observations at time úiÄ1
are not possible in a periodical inspection scheme,
so there is no way to obtain observations at yA,
yB and yC . Nevertheless, it is possible to use the
information contained in z = yC Ä yA 2 [0; Z].
Fig. 3　Model of the deterioration process.

points is known in order to develop the model,
despite this assumption is not necessarily essen-
tial. The following paragraph discusses that even
without information at time points yA and yB an
exponential hazard model can be estimated.

In the case the condition state of a bridge com-
ponent at time úi (time point yC) is assumed to
change from i to i+1, the period length in which
the condition state has remained at i (referred
as the life expectancy of a condition state i) is
represented by êi = úi ÄúiÄ1 = yC . The life ex-
pectancy of a condition state i is assumed to be a
stochastic variable with probability density func-
tion fi(êi) and distribution function Fi(êi), being
êi deåned in the domain [0;1]. The distribution
function is deåned as

Fi(yi) =
Z yi

0
fi(êi)dêi (4)

The distribution function Fi(yi) represents the
cumulative probability of the transition in the
condition state from i to i+1 when i is set at the
initial time point yi = 0(time úA) and for a time
interval measured along the sample time-axis un-
til the time point yi (time úiÄ1 + yi). There-
fore, using the cumulative probability Fi(yi), the
probability ~Fi(yi) of a transition in the condition
state i during the time points interval yi = 0 to

yi 2 [0;1] is deåned by ~Fi(yi)
Probfêi ï yig = ~Fi(yi) = 1Ä Fi(yi) (5)

The conditional probability that the condition
state of a component at time yi advances from
i to i+ 1 during the time interval [yi; yi +Åyi] is
deåned as

ïi(yi)Åyi =
fi(yi)Åyi
~Fi(yi)

(6)

where the probability densityïi(yi) is referred as
the hazard function.

(2) Exponential hazard model
In this Section, it is assumed that the deteri-

oration process of a bridge component satisåes
Markov property and that the hazard function is
independent of the time point yi on the sample
time-axis. That is, for a åxed value of íi > 0

ïi(yi) = íi (7)

By using the exponential hazard function above
(7) it is possible to represent a deterioration pro-
cess of a bridge component that satisåes the
Markov property (independency from past his-
tory). In addition, it is assumed that íi 6= íj (i 6=
j). By diãerentiating both sides of equation (5)
with respect to yi

d ~Fi(yi)

dyi
= Äfi(yi) (8)

Equation (6) then becomes

ïi(yi) =
fi(yi)
~Fi(yi)

= Ä
d ~Fi(yi)
dyi
~F (yi)

=
d

dyi

ê
Ä log ~Fi(yi)

ë
(9)

Considering that ~Fi(0) = 1 Ä Fi(0) = 1 and by
integrating equation (9):Z yi

0
ïi(u)du = [Ä log ~Fi(u)]yi0 = Ä log ~Fi(yi) (10)

Using the hazard function ïi(yi) = íi，the prob-
ability ~Fi(yi) that the life expectancy of the con-
dition state i becomes bigger than yi is expressed
by

~Fi(yi) = exp

î
Ä

Z yi

0
ïi(u)du

ï
= exp(Äíiyi) (11)

An exponential hazard model is obtained．Ac-
cording to equation (8) the probability density
function fi(êi) of the life expectancy of the con-
dition state i is

fi(êi) = íi exp(Äíiêi) (12)

Next, consider the condition state has changed to
i at the calendar time úiÄ1, and remains constant
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until the inspection time úA. That is, the condi-
tion state observed by inspection at time úA is i.
In this case, the condition state at the time point
yA on a sample time-axis is also i, and the prob-
ability that the condition state i will remain con-
stant at a subsequent time point measured from
the time point yA by more than zi (ï 0) is deåned
as

~Fi(yA + zijêi ï yA)
= Probfêi ï yA + zijêi ï yAg (13)

dividing by the probability ~Fi(yi) describing in
equation (5) results

Probfêi ï yA + zig
Probfêi ï yAg =

~Fi(yA + zi)
~Fi(yA)

(14)

using equation (11) the right side of the above
equation becomes

~Fi(yA + zi)
~Fi(yA)

=
expfÄíi(yA + zi)g
exp(ÄíiyA)

= exp(Äíizi) (15)

In addition, for a condition state i obtained by in-
spection at time point yA the probability that the
same condition state will be observed by a subse-
quent inspection at the time point yB = yA + Z
is

Prob[h(yB) = ijh(yA) = i] = exp(ÄíiZ) (16)
where Z expresses the interval between two in-
spection times. The probability Prob[h(yB) =
ijh(yA) = i] is nothing but the Markov transi-
tion probability ôii. That is, when an exponential
hazard function is employed, the transition prob-
ability ôii is dependent only on the hazard rate íi
and the inspection interval Z. Even more, with-
out using deterministic information on the time
points yA and yB, it is still possible to estimate
transition probabilities.

(3) Determination of Markov transition
probabilities

Using an exponential hazard function the prob-
ability that the condition state at the inspection
time points yA and yB changes from i to i+1 can
be obtained. This transition can occur if 1) the
condition state i remains constant between a time
point yA to a time point si = yA+zi; (zi 2 [0; Z]),
2) the condition state changes to i+1 at the time
point yA+zi, and 3) it remains constant between
the time interval yA+ zi, yB. Although the exact
time in which the condition state transits from i
to i+1 cannot be traced by periodical inspection,
it can be temporarily assumed that the transi-
tion occurs at the time point (yA+ñzi) 2 [yA; yB].
Given a condition state i at the inspection time
point yA that remains constant until the time

point yA+ñzi, the probability density that at this
time point the condition state changes to i+ 1 is

gi(ñzijêi ï yA) = fi(ñzi + yA)~Fi(yA)

=
íi expfÄíi(ñzi + yA)g

exp(ÄíiyA) = íi exp(Äíiñzi) (17)
With satisfying the above condition, the condi-
tional probability density that the condition state
observed at the inspection time point yB is i+ 1
becomes

qi+1(ñzijêi ï yA)
= gi(ñzijêi ï yA)Å~Fi+1(yB Ä ñzi Ä yA)
= íi exp(Äíiñzi) expfÄíi+1(Z Ä ñzi)g
= íi exp(Äíi+1Z) expfÄ(íi Äíi+1)ñzig (18)

However, the explanation above has been applied
for a åxed value ñsi = yA+ñzi. The life expectancy
êi of a condition state i is in fact a stochastic
variable, so ñzi may change in range [0; Z]. The
Markov transition probability that the condition
state change from i to i+1 during the time points
yA and yB is

ôii+1 = Prob[h(yB) = i+ 1jh(yA) = i]
=

Z Z

0
qi+1(zijêi ï yA)dzi

=
Z Z

0
íi exp(Äíi+1Z) expfÄ(íi Äíi+1)zigdzi

=
íi

íi Äíi+1 fÄ exp(ÄíiZ) + exp(Äíi+1Z)g (19)
where ôii+1 > 0 is indiãerent to the relative size
between íi and íj . The assumption íi 6= íi+1
implies 1 > ôii+1. As these characteristics are
trivial in the derivation process of equation (19),
the veriåcation is omitted. The case a condi-
tion state between two inspection time points
changes from i to two or more condition states
j(j ï i+ 2) is next considered. The distribution
function and the probability density function of
a period length in which a condition state j re-
mains constant is denoted by Fi(yj) and fj(yj)
respectively. The hazard function related to the
condition state j is denoted by ïj(yj) = íj . The
transition of the condition state from i to j during
the time interval [yA; yB] can occur if 1) the con-
dition state i remains constant during the time
interval yA, ñsi = yA + ñzi 2 [yA; yB], 2) the con-
dition state changes to i + 1 at the time point
ñsi = yA + ñzi, 3) the condition state i+ 1 remains
constant during the time interval ñsi = yA + ñzi,
ñsi+1 = ñsi + ñzi+1 (î yB), and at this time point
changes to i + 2. After repeating the same pro-
cess 4) the condition state changed to j at the
time point ñsjÄ1 (î yB) remains constant until
the time point yB . The conditional probability
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density that the above conditions occur simulta-
neously is given by

qj(ñzi;ñzi+1;ÅÅÅ;ñzjÄ1jêi ï yA)

= gi(ñzijêi ï yA)
jÄ1Y

m=i+1

fm(ñzm) ~Fj

0@Z Ä jÄ1X
m=i

ñzm

1A
=
jÄ1Y
m=i

ím Åexp
8<:Ä jÄ1X

m=i

ímñzm Äíj(Z Ä
jÄ1X
m=i

ñzm)

9=;
=
jÄ1Y
m=i

ím Åexp
8<:ÄíjZ Ä jÄ1X

m=i

(ím Äíj)ñzm
9=; (20)

where ñzi;ÅÅÅ;ñzjÄ1are åxed values. Since the life
expectancy êi of condition states i (i = 1;ÅÅÅ; JÄ
1) is a stochastic variable, the values of zi ï
0;ÅÅÅ; zjÄ1 ï 0 are variable under the following
condition:

0 î zi + zi+1 +ÅÅÅ+ zjÄ1 î Z (21)

Therefore, the Markov transition probabilities ôij
that a transition in the condition state from i to
j (j ï i+ 2) occurs between the inspection time
points yA and yB becomes

ôij = Prob[h(yB) = jjh(yA) = i]

=
Z Z

0

Z ZÄzi

0
ÅÅÅ

Z ZÄ
PjÄ2

m=i
zm

0

qj(zi;ÅÅÅ; zjÄ1jêi ï yA)dziÅÅÅdzjÄ1

=
jX
k=i

kÄ1Y
m=i

ím
ím Äík

jÄ1Y
m=k

ím
ím+1 Äík exp(ÄíkZ) (22)

as shown in the APPENDIX A．Here the fol-
lowing notation rule is given.( QkÄ1

m=i
ím

ímÄík = 1 (when k = i）QjÄ1
m=k

ím
ím+1Äík = 1 (when k = j）

ôiJ is arranged using the Markov transition prob-
abilities conditions (3)

ôiJ = 1Ä
JÄ1X
j=i

ôij (23)

The Markov transition probabilities based on the
exponential hazard model becomes

ôii = exp(ÄíiZ) (24a)

ôii+1 =
íi

íi Äíi+1 fÄ exp(ÄíiZ) + exp(Äíi+1Z)g
(24b)

ôij =
jX
k=i

kÄ1Y
m=i

ím
ím Äík

jÄ1Y
m=k

ím
ím+1 Äík exp(ÄíkZ)

(j = i;ÅÅÅ; J) (24c)

ôiJ = 1Ä
JÄ1X
j=i

ôij (24d)

(i = 1;ÅÅÅ; J Ä 1)

(4) Time adjustment of Markov transition
probability

As shown in equations (24a) - (24d), Markov
transition probabilities depend on the inspection
interval value Z. For clarity of presentation,
the Markov transition probability is expressed as
ôij(Z), so the Markov transition probabilities ma-
trix related to the inspection time interval Z be-
comes

Ö (Z) =

0B@ ô11(Z) ÅÅÅ ô1J(Z)
...

. . .
...

0 ÅÅÅ ôJJ(Z)

1CA (25)

For an integer value n, two inspection interval Z
and nZ are considered. The Markov transition
probability matrices Ö (Z) and Ö (nZ) describe
the same deterioration process for two diãerent
time intervals. Therefore, the Markov transition
probability matrix Ö (nZ) expressed in terms of
the Markov transition probabilities matrix Ö (Z)
is

Ö (nZ) = fÖ (Z)gn (26)

The condition expressed above is referred as the
time adjustment conditions of a Markov tran-
sition probability matrix. In order to satisfy
this condition, a åxed mathematical structure
between the Markov transition probabilities ôij
must hold. In the APPENDIX A, it is theoret-
ically demonstrated that the transition probabil-
ities (24a) - (24d), deåned by using exponential
hazard models, satisfy the time adjustment con-
ditions. In other words, it is possible to ånd a
Markov transition probabilities matrix for an ar-
bitrary time interval Z by changing the value of
the inspection interval Z contained in the transi-
tion probabilities (24a) - (24d).

4. ESTIMATION OF MARKOV

TRANSITION PROBABILITIES

(1) Contents of periodical inspection data

Suppose periodical inspection data on the same
kind of K bridge components is available. An in-
spection sample k(k = 1;ÅÅÅ;K) describes two
continuous periodical inspections carried out at
times úkA and úkB and the respective condition
states ratings h(úkA) and h(ú

k
B) measured at those

times. Diãerences in the inspection intervals of
the samples are not inconvenient. Based on the
above inspection data, the inspection interval of
a sample k is deåned as Zk = úkB ÄúkA. In addi-
tion a dummy variable based on the deterioration
progress patterns between two inspections times
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is deåned as

ékij =

ö
1 when h(úkA) = i and h(ú

k
B) = j

0 otherwise
(27)

for each ékij (i; j = 1;ÅÅÅ; J；k = 1;ÅÅÅ;K). Fur-
thermore, the structural characteristics and usage
conditions of a bridge that aãect the deterioration
speed of a component are represented by the vec-
tor xk = (xk1;ÅÅÅ; xkM ), where xkm (m = 1;ÅÅÅ;M)
represents the value of a characteristic variable
m observed in the sample data k. The infor-
mation contained in the inspection sample data
k can be rearranged as Ñk = (ékij ; Z

k;xk). On
the other hand, the exponential hazard function
of the deterioration process for a sample data
k(k = 1;ÅÅÅ;K) is

ïki (y
k
i ) = í

k
i (i = 1;ÅÅÅ; J Ä 1)

Since the condition state J is the absorption
state of a Markov chain and ôJJ = 1 the rate
of the hazard is not deåned. The hazard rate
íki (i = 1;ÅÅÅ; J Ä 1; k = 1;ÅÅÅ;K) characterizing
the deterioration process of a bridge is considered
to change in relation to the vector xk as follows:

íki = x
kå0i (28)

where åi = (åi;1;ÅÅÅ; åi;M ) is a row vector of un-
known parameters åi;m (m = 1;ÅÅÅ;M) and the
symbol 0 indicates the vector is transposed．In or-
der to obtain Markov transition probabilities the
årst step consists in estimating the exponential
hazard function ïki (y

k
i ) = í

k
i based on the inspec-

tion sample information Ñk (k = 1;ÅÅÅ;K). In
Section 4.(2) the estimation of the exponential
hazard function is described. As a second step,
Markov transition probabilities are estimated us-
ing the exponential hazard functions found in the
previous step. The methodology proposed by
this research permits estimating Markov transi-
tion probabilities for every individual component.
However, determining an optimal repair strategy
for every individual component can complicate
its application to the bridge management prac-
tice. For this reason, it can be more convenient in
many cases to assume an average Markov transi-
tion probability analog to that of the components.
The estimation of the average Markov transition
probability using the exponential hazard model
estimated is explained in Section 4.(3). In ad-
dition, using exponential hazard models, a risk
management index for bridge management can
also be derived. The expected elapsed period
from the time the relevant rating is reached until
the following rating is attained as a result of the
deterioration progress (referred as the expected
life expectancy of a rating) is deåned by using

the survival function ~Fi(yki ) as
9)

RMDki =
Z 1

0

~Fi(y
k
i )dy

k
i (29)

By deåning the survival function ~Fi(yki ) in
terms of the exponential hazard function as in
equation (11), as the expected life expectancy of
a rating becomes

RMDki =
Z 1

0
exp(Äíki yki )dyki =

1

íki
(30)

(2) Estimation of the hazard model

Information Ñk = (ñékij ; ñZ
k; ñxk) can be acquired

in relation to the inspection sample k, where the
symbol ñ　 indicates an actual measurement．The
Markov transition probabilities can be expressed
in terms of the hazard functions (24a)-(24d). Al-
though the hazard rate íki (i = 1;ÅÅÅ; J Ä 1; k =
1;ÅÅÅ;K) of each state condition is contained in
the Markov transition probabilities, it can be rep-
resented by equation (28) when using the vec-
tor ñxk of a bridge component. Moreover, the
deterioration transition probability also depends
on inspection interval ñZk in which the data was
observed. For clarity of presentation, the tran-
sition probability ôij is expressed as a function
of the measured data ( ñZk; ñxk) obtained from vi-
sual inspection and the unknown parameters åi
as ôij( ñZk; ñxk : åi). If the deterioration progress
of the bridge components in a sample K are
assumed to be mutually independent, the log-
likelihood function expressing the simultaneous
probability density of the deterioration transition
pattern for all inspection samples is 12);13)

ln[L(å)] = ln
24JÄ1Y
i=1

JY
j=i

KY
k=1

n
ôij( ñZ

k; ñxk : å)
oñékij35

=
JÄ1X
i=1

JX
j=i

KX
k=1

ñékij ln
h
ôij( ñZ

k; ñxk : å)
i

(31)

where ñékij , ñZ
k and ñxk are all determined throgh

inspections and åi (i = 1;ÅÅÅ; J Ä 1) are parame-
ters to be estimated. Estimations of the parame-
ters å can be obtained by solving the optimality
conditions

@ ln[L(å̂)]
@åi;m

= 0; (32)

(i = 1;ÅÅÅ; J Ä 1;m = 1;ÅÅÅ;M)
that result from maximizing the log-likelihood
function (31). The optimal values å̂ =
(å̂1;1;ÅÅÅ; å̂J;M ) are then estimated by applying a
numerical iterative procedure such as the Newton
Method for the (JÄ1)M order nonlinear simulta-
neous equations 14). Furthermore, estimator for
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the asymptotical covariance matrix of the param-
eters is given by

Ü̂ (å̂) =

"
@2 lnfL(å̂)g
@å@å0

#Ä1
(33)

The (J Ä 1)M Ç (J Ä 1)M order inverse matrix
of the right-hand side of the above formula, com-
posed by the elements @2 lnfL(å̂)g=@åi;m@åi0;m0
results to be the inverse matrix of the Fisher in-
formation matrix.

(3) Average Markov transition probability

Given the vector xk and the inspection inter-
val Zk, the Markov transition probabilities of a
bridge can be estimated by using equations (24a)-
(24d)．Markov transition probabilities satisfying
time adjustment conditions can be estimated for
arbitrary inspection intervals by changing the
value Zk. As proposed in this research, a Markov
transition probability matrix characterizing every
bridge component can also be estimated. How-
ever, when forecasting the deterioration pattern
of many bridges as a whole, in many cases, it is
more convenient to search an average transition
probability rather than a transition probability
for every component. For that purpose, it is nec-
essary to develop a methodology to estimate the
average transition probability matrix that also
satisåes at the time adjustment conditions. The
methodology presented in this section pays atten-
tion to the hazard rates íki (k = 1;ÅÅÅ;K). The
distribution function of the bridge characteristics
for the population sample of bridge components
is expressed as Ä(x)．For this case, the expected
value of the hazard rate E[íi] for the population
sample is deåned as

E[íi] =
Z
Ç
xå0idÄ(x) (34)

where Ç makes reference to the population sam-
ple．A Markov transition probabilities matrix is
said to satisfy the time adjustment conditions if
1) Markov transition probabilities are estimated
by using the exponential hazard functions (24a) -
(24d), and 2) the Markov transition probabilities
matrix for each sample is deåned by the hazard
rates íki (i = 1;ÅÅÅ; J Ä 1; k = 1;ÅÅÅ;K). There-
fore, a Markov transition probabilities matrix es-
timated by using the averaging equation (34) is
said to also satisfy the time adjustment condi-
tions.

Table 1　Ratings description 15).
State Description
1 Deck is new or near new,

almost no sign of deterioration
2 between 1and 3
3 Only localized areas of leakage

(e.g., single longitudinal crack with
leakage, or deck edges showing only
spotty leakage).

4 Between 3 and 5
5 75 percent or more of the deck has

leakage. Only localized spalled areas.
Eèorescence along the girder top
çanges.

6 Between 5 and 7
7 Heavy spalling. Heavy eèorescence.

Punch through has occured or is likely.
Deck saturated to point that concrete
is rubble.

Note) At the level of potential risk or collapse, a
slightly less deterioration level reduces the rating
to the next one.

5. EMPIRICAL ANALYSIS

(1) Outline

In this section, a practical example of the model
proposed above is presented. Visual inspection
data on New York City's (NYC) bridges for the
ten years (1987 - 1996) are used. In the U.S.
carrying out visual inspections to all bridges at
least once every 2 years is an obligation. The to-
tal number of bridges managed in NY is 764 giv-
ing a total of 4689 spans, and a total deck area
of 1,430,000m2 by the year 2000. The average
age of those bridges is over 75 years. In accor-
dance to the bridge inspection manual '82 15) of
the State of New York, visual inspection is carried
out for up to 25 superstructure components and
22 substructure components. The results of a vi-
sual inspection give seven levels (1-7) as a rating
of the conditions of the components. In a visual
inspection carried out at each span of a bridge
where there are two or more similar components,
the representative rating of the span is normally
assumed to be the worst found. The result of
these inspections is digitalized in a database for
every bridge identiåcation number. In addition,
information about the bridge type and structural
characteristics, location, number of spans, aver-
age traéc volume, etc. is collected.
This study discusses reinforced concrete decks

which are important components for maintenance
and management and on which wheel loads act
directly. Table 1 shows the physical meanings
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of ratings for reinforced concrete decks. In the
bridge inspection manual '82 of State of New
York15), the rating evaluation is not systemized
according to kinds of damages (crack, eèores-
cence, spalling, etc.). In Japan, on the other
hand, the Periodical Bridge Inspection Manual
(Draft)16), for example, adopts a 5 point rat-
ing system (a-to-e) based upon the deterioration
mechanism of mainly crack propagation. Further-
more, the width and length of the crack is given
quantitatively in each rating for a more objective
assessment. Regardless of the characteristics of
the cracking, moreover, spalling and exposed re-
inforcing steel are both evaluated in another cat-
egories, and leakage, eèorescence and rust stains
due to cracks are evaluated in the category of
crack. In spite of these diãerences between both
manuals, however, a comparison of both ratings
of reinforced concrete decks shows that they cor-
respond on the whole (2→a, 3→b, 4→ c, 5→d,
6&7→ e).
This database is used in this research in or-

der to estimate the parameters of the exponential
hazard function. In order to consider the struc-
tural characteristics and usage conditions vari-
ables of the bridge x, three variables x1 = 1, x2
and x3 are adopted to describe an absolute term,
the average traéc volume and the deck surface
area (referred as deck area) respectively. Samples
containing atypical data caused by misjudgement
or samples in which a repair work was carried out
were removed. The data in which information on
average traéc and deck area is available were also
åltered accordingly. The ånal database employed
in the exponential hazard model estimation con-
tains a total of 32,902 samples. In addition, in
the 32,902 explanatory variables in each sample
the traéc levels and deck areas were normalized
to their maximum values to facilitate the estima-
tion procedure.

(2) Results
Using the sample data mentioned above and

previously removing the condition state rating
7 from the data 6 exponential hazard functions
were estimated. For each sample, ratings describ-
ing the results of visual inspections carried out at
two diãerent points in time are recorded. The
exponential hazard model (28) for this example
expressed in terms of the explanation variables is
deåned as

íki = åi;1 +åi;2x
k
2 +åi;3x

k
3 (35)

(i = 1;ÅÅÅ; 6; k = 1;ÅÅÅ;K)
Since there is one exponential hazard function
for each of the six ratings and three unknown

Table 2　Exponential hazard model results.
State Absolute Average Deck

terms traéc level area
åi;1 åi;2 åi;3

1 0.3289 － 1.3648
(26.144) － (2.547)

2 0.2071 0.0779 0.8427
(25.432) (2.537) (5.099)

3 0.1334 0.1379 －
(32.016) (8.456) －

4 0.0847 0.0961 0.0755
(21.154) (6.608) (3.250)

5 0.0979 － －
(21.742) － －

6 0.1288 0.3842 －
(6.951) (4.067) －

Note) tÄ values are shown in parenthesis

parameters in each equation, this gives a total
of 18 unknown parameters åi;1; åi;2; åi;3 (i =
1;ÅÅÅ; 6). Although the exponential hazard model
was årstly estimated using all 18 parameters, low
values of the tÄ and sign conditions parameters
were found. Therefore, in some cases the expo-
nential hazard model was estimated for a com-
bination of explanation variables that do not in-
clude xk2 and/or x

k
3 . Combinations of explanatory

variables were chosen so as to maximize the log-
likelihood function (31) with a signiåcance level
of the tÄ value of 95% for the explanatory vari-
ables and to satisfy sign restrictions conditions.
In Table 2 the results of the maximum likeli-
hood estimations å̂ are shown with the respec-
tive tÄ values of each explanatory variable．The
Markov transition probabilities matrix for each
sample is able to be estimated by using the expo-
nential hazard model as proposed in this research.
As explained in section 4.(3) the average Markov
transition probabilities matrix is determined in
order to avoid the huge amount of individual es-
timations. Furthermore, in order to analyze the
validity of the methodology proposed by this re-
search a Markov transition probability matrix is
also estimated by using a simpliåed method de-
scribed as follows:

ñôij(l) =

#fh(úkA) = i; h(úkB) = j;úkB ÄúkA = l; k 2 [1;K]g
#fh(úkA) = i; k 2 [1;K]g

(36)

where #fthe formulag is the number of samples
satisfying the formula. However, when searching
for Markov transition probabilities by using a nu-
merical method, it is necessary to åx the inspec-
tion time interval. Then, the inspection interval
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Table 3　Life expectancy of a rating.

State E[íi] E[RMDki ] E[RMD
k
i ]

(year) (year)
1 0.3074 3.25 3.49
2 0.2605 4.33 4.38
3 0.1653 6.27 6.29
4 0.1048 10.04 9.43
5 0.0866 11.55 7.64
6 0.2067 5.11 14.39

was åxed to two years, since most of the sample
data were taken during this interval. The total
of samples then becomes 26,748. The average
values of traéc level and deck surface for this
sample data are 0.2266 and 0.0431 respectively.
As mentioned above, traéc levels and deck areas
were normalized using the maximum values in the
32,902 samples data. The expected hazard rate
E[íi] is obtained through equation (34), which is
deåned using the exponential hazard function for
the database mentioned above, as shown in Ta-
ble 3. The life expectancy of a rating, indicating
the elapsed time in reaching a following rating, is
expressed by equation (30). The life expectancy
of a rating RMDki of each of the 26,748 sam-
ples was calculated. The average values for each
rating E[RMDki ] using the proposed methodol-

ogy and the average values E[RMD
k
i ] obtained

by the simpliåed method are shown in Table 3．

The averaged life expectancies E[RMD
k
i ] using

Markov transition probabilities ñôij in equation
(36) is given by

E[RMD
k
i ] = 2ñôiJ(2) +

1X
l=1

JÄ1X
m=i

(2l + 2)

Åñôim(2l)ñômJ(2)Ä
JÄ1X
m=i+1

E[RMD
k
m] (37)

ñôij(2l) is the Markov transition probability for 2l
years interval, which raises the transition proba-
bility matrix estimated by the simpliåed method
to the lth power. The summation of the årst and
the second terms of the right hand side in the
above equation means the life expectancy from
the condition state i to J . The third term is the
summation of RMD

k
i from the condition state

i+1 to JÄ1, and means the life expectancy i+1 to
J . That is to say, the life expectancy E[RMD

k
i ]

of the condition state I is deåned as the value
which subtracts the life expectancy i + 1 to J
from the one i to J . As shown in this table the
life expectancy of ratings 1～3 estimated by using
the methodology proposed in this research does
not greatly diãer from those obtained by the sim-
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Fig. 4　Expected deterioration path for traéc
level.

pliåed method. However, for higher deterioration
conditions (states 4～6) noticeable diãerences are
observed. Furthermore, the average Markov tran-
sition probabilities matrix obtained by the pro-
posed methodology is shown in Table 4 and in
Table 5 for the simpliåed method. For high val-
ues of the condition state, the diãerence in the
average transition probabilities obtained by the
proposed estimations becomes large in compari-
son to those obtained by the simpliåed method
because 1) the number of samples decreases rela-
tively, and 2) the diãerence in the average transi-
tion probabilities becomes large due to the sample
attribute.

The eãect of diãerent traéc levels or deck ar-
eas in Markov transition probabilities cannot be
analyzed when using the simpliåed method but
can be handled by using the methodology pro-
posed in this paper. The eãects of diãerent traf-
åc levels or deck areas on the deterioration speed
are analyzed. To do so, the expected deteriora-
tion path characterizing the average deterioration
progress is deåned in relation to the Markov tran-
sition probabilities. The expected deterioration
path can be represented by a graph describing
the average deterioration process during the life
expectancy of a rating RMDki (from the time the
rating is reached to the time the next rating is
attained). Fig.4 shows the expected deteriora-
tion path for a benchmark case (BM) in which
the traéc level and the deck areas are set to the
sample average values 0.2266 and 0.0431 respec-
tively. The condition state gets worse as long as
the deterioration progress surpasses a åx number
of years from the initial point in time. In order
to observe a transition of the condition state to
a subsequent ranking, in the expected deterio-
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Table 4　Transition probabilities matrix from estimation results.
State 1 2 3 4 5 6 7
1 0.5408 0.3485 0.0984 0.0116 0.0006 0.0000 0.0000
2 0 0.5939 0.3409 0.0606 0.0044 0.0002 0.0000
3 0 0 0.7185 0.2525 0.0273 0.0015 0.0002
4 0 0 0 0.8109 0.1731 0.0139 0.0021
5 0 0 0 0 0.8410 0.1295 0.0295
6 0 0 0 0 0 0.6614 0.3386
7 0 0 0 0 0 0 1

Table 5　 Transition probabilities matrix from simpliåed method.
State 1 2 3 4 5 6 7
1 0.5382 0.3929 0.0595 0.0070 0.0018 0.0006 0.0000
2 0 0.6235 0.3272 0.0463 0.0022 0.0005 0.0002
3 0 0 0.7203 0.2557 0.0222 0.0018 0.0000
4 0 0 0 0.8046 0.1800 0.0126 0.0028
5 0 0 0 0 0.8413 0.1040 0.0547
6 0 0 0 0 0 0.8610 0.1390
7 0 0 0 0 0 0 1
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Fig. 5　 Expected deterioration path for deck area.

ration path, it is required an elapsed time of the
deterioration progress for each condition state in
accordance to the life expectancy of ratings. As
shown in this ågure, the expected deterioration
path does not necessarily have to show a convex
shape. This is because the condition state is de-
åned as a discrete variable state, and it is not
continuously expressed as cardinal measure. If
the standard of the condition state measures were
changed, the shape of the expected deterioration
path will diãer as well. Fig.4 shows the expected
deterioration path for diãerent traéc levels: a) 0
times the BM case (traéc level: 0.2266)，b) 0.3
times the BM case，c) 3 times the BM case, and
d) a traéc level of 1. As shown in this ågure,
in the case the deck does not exhibit much de-
terioration (condition state 1-3), the traéc level

does not have a noticeable inçuence on its dete-
rioration progress. However, for an advanced de-
terioration condition, the deterioration progress
is notably inçuenced by traéc levels increments.
On the other hand, Fig.5 shows an analysis of
the relation between the deterioration progress
speed and the deck area for the BM case (Average
traéc level 0.2266， average deck areas 0.0431).
This ågure shows that the bigger the deck area
the faster the deterioration progress. Unlike the
case of traéc level, in condition state 2 in which
deterioration is not advanced, the deck area has
already aãected the degradation expected value
path.

(3) Sample number and estimation
accuracy

The size of database used in the empirical anal-
ysis, (referred as original database) is 32,902.
However, there are many cases in which a suf-
åcient number of samples is not available. An
important problem consists in deåning the min-
imal number of samples necessary to make ac-
curate estimations. In order to determine the
accuracy of an analysis of the data used in the
exponential hazard model estimations is made.
Suppose that a random sample from the origi-
nal database is selected. Then it is possible to
analyze the inçuence of the sample size in the
exponential hazard model estimations, and de-
termine the minimal sample size that attains the
same results obtained by using the original data-
base. The maximum likelihood estimations of the
exponential hazard function based on the origi-
nal database are expressed as å̂. In addition, the
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maximum likelihood estimations based on the ex-
tracted database t are expressed as å̂

t
. The ex-

ponential hazard functions based on the original
database and the extracted database can be de-
åned as

í̂ki = å̂i;1 + å̂i;2x
k
2 + å̂i;3x

k
3 (38a)

(i = 1;ÅÅÅ; 6; k = 1;ÅÅÅ; n)
í̂k;ti = å̂ti;1 + å̂

t
i;2x

k
2 + å̂

t
i;3x

k
3 (38b)

(i = 1;ÅÅÅ; 6; k = n+ 1;ÅÅÅ; n+ n0)
xk2; x

k
3 (k = 1;ÅÅÅ; n)，xk2; xk3 (k = n+1;ÅÅÅ; n+n0)

represent sample data of the original database
and the extracted database, and n, n0 denote cor-
responding sample numbers. That is, the cor-
responding sample numbers are n and n0. The
exponential hazard functions based for the new
pooled database k (k = 1;ÅÅÅ; n + n0) is deåned
as

~íki = (å̂i;1 +é
kr̂i;1) + (å̂i;2 +é

kr̂i;2)x
k
2

+(å̂i;3 +é
kr̂i;3)x

k
3 (39)

where 8><>: r̂i;1 = å̂ti;1 Ä å̂i;1
r̂i;2 = å̂ti;2 Ä å̂i;2
r̂i;3 = å̂ti;3 Ä å̂i;3

(40)

The dummy variable ék (k = 1;ÅÅÅ; n + n0) is
deåned as

ék =

ö
0 k = 1;ÅÅÅ; n
1 k = n+ 1;ÅÅÅ; n+ n0 (41)

In order to analyze if the estimations of the ex-
ponential hazard model based on the extracted
database correspond to those based on the origi-
nal database, a Chow test 17) analyzing the simi-

larity of the results å̂，å̂
t
is applied. That is, to

prove that the exponential hazard models for the
condition states are similar the null hypothesis
H0 and the alternative hypothesis H1 becomeö

H0 : r̂i;m =and 0 (m = 1; 2; 3)
H1 : r̂i;m 6=or 0 (m = 1; 2; 3) (42)

The null hypothesis H0 requires that r̂i;m = 0 si-
multaneously to all m = 1; 2; 3．The alternative
hypothesis H1, on the other hand, implies that
r̂i;m 6= 0 for any arbitrary m = 1; 2; 3. For the
estimation results based on the extraction data-
base to be similar to those based on the original
database, the log-likelihood ratio test in relation
to the null hypothesis H0 and the alternative hy-
pothesis H1 is

ò= 2
n
ln[L(å̂; r̂)]Ä ln[L(~å)]

o
(43)

ln[L(å̂; r̂)] =
6X
i=1

7X
j=i

n+n0X
k=1

ñékij

Åln
h
ôij( ñZ

k; ñxk : å̂; r̂)
i

ln[L(~å)] =
6X
i=1

7X
j=i

n+n0X
k=1

ñékij ln
h
ôij( ñZ

k; ñxk : ~å)
i

where r̂ = (r̂1;1;ÅÅÅ; r̂6;3). In the case ln[L(å̂i; r̂i)]
is not restricted, (the null hypothesis H0 is not
restricted) ln[L(~åi)] express the likelihood under
the restrictions of the null hypothesis H0. In ad-
dition, ~å express the maximum likelihood esti-
mations under the null hypothesis H0．Now，as
shown in Table 2, depending on the explanatory
variable, the exponential hazard model estima-
tions for some parameters å̂i;m = 0. In the expo-
nential hazard model (39) there are 13 parame-
ters in which å̂i;m 6= 0．In order to consistently
compare the results of the Chow test applied to
diãerent databases, it is necessary to unify the
degree of freedom of the likelihood ratio tests.
For this case, for those parameters estimated by
using the original database in which å̂i;m = 0 it

is assumed that å̂ti;m = 0. That is, the restric-
tion r̂i;m = 0 in the estimation of a hazard model
(39). Therefore, the degree of freedom of the like-
lihood ratio test for the hazard model estimations
based on the original data base becomes the num-
ber of parameters for which å̂i;m 6= 0. If these
statistical test results òfall in the rejection area
òï ü2(100Äã)(13) the null hypothesis H0 can be
rejected at a ã％ signiåcance level. Note, that for
ü2(100Äã)(13) expressing the ü

2 distribution for a
degree of freedom 13, 13 express the number of
parameters å̂i;m 6= 0 . In the case the null hy-
pothesis H0 is rejected, it is considered as the
exponential hazard model estimations from the
extracted database are not identical with those
from the original database.
The number of samples extracted from the orig-

inal database can be determined. Total 7 ex-
tracted samples of which number increased from
1000 to 4000 by the step size of 500 were set and
were composed by random samples taken from
the original database. This procedure is repeated
1000 time for each case and 7000 extraction data-
base are obtained. The statistics test results ò
(equation (43)) are obtained for each exponential
hazard model created with each extracted data-
bases. Furthermore, it is determined whether the
null hypothesis H0 is rejected or not for a 1 %
signiåcance level for the statistic test results cal-
culated for 1000 extracted database respectively.
Now, the fraction ö(w) of null hypothesis H0 re-
jected in relation to the size of the sample w is
deåned as

ö(w) =
Number of databases rejecting H0

Total database size
(44)
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Fig. 6　Sample size and estimation accuracy.

Fig.6 shows the relation between the sample size
w and null hypothesis rejecting rate ö(w). As
the number of samples contained in an extraction
database increases the number fraction of rejec-
tions decreases. As far as this analysis shows, for
a sample size of 1000 the null hypothesisH0 is re-
jected in more than 25.4% and for a sample size
of 1500 it is rejected in more than 9.6%. That
is, if an exponential hazard model is estimated
using a sample size of 1500, there is a probability
of 0.1 that the results greatly diãer from those
obtained by using the original database. In order
to keep the rejection rate of H i0 below 5%, it is
necessary to assure a sample size of at least 2000.
Although the analysis made above only applies
to the database used in this research, in order to
assure an estimation accuracy equivalent to the
case shown in any other original database, a con-
siderable sample size (2000 or more) obtained by
visual inspection has to be accumulated

6. CONCLUSIONS

In this research a methodology to estimate
Markov transition probabilities to forecast the
deterioration a bridge component was proposed.
The transition progress between a set of condi-
tion states representing the conditions of each
bridge component were deåned by using exponen-
tial hazard models. Furthermore, based on peri-
odical inspection data, the maximum likelihood
method was proposed to determine the parame-
ters of the exponential hazard model. Heteroge-
neous inspection data related to speciåc struc-
tural characteristics and usage conditions were
employed in order to estimate the deterioration of
bridge components in a disaggregate way. The ex-

ponential hazard model proposed by this research
permits estimating Markov transition probabili-
ties for arbitrary time intervals. In addition, the
usefulness of the Markov transition probabilities
estimation method proposed by this research was
positively veriåed through an empirical example
applied to steel bridges. The methodology pro-
posed by this research can be applied to forecast
the deterioration not only of steel bridges but also
to other infrastructures if the respective empiri-
cal research is accumulated. However, there are
still many problems left behind 1) In actual prac-
tice of inspection, visual inspection errors arising
from misjudgment for example are not deal with
in this research. 2) The hazard model used in
this research assumes the structure of all bridge
component samples is similar. However, an er-
ror peculiar to a sample may be included in the
hazard function. For this case, it is necessary to
apply a diãerent type of model like a mixture haz-
ard model for example. 3) It is assumed that the
periodic inspection data at various times is avail-
able. In many cases only inspection data at one
time is available. Even in such a case, if the data
obtained at the time the bridge is opened to the
public, Markov transition probabilities can be es-
timated. An estimation method restricted to this
kind of data is required. 4) It is expected that
more inspection data will be accumulated in the
short future. Therefore it is necessary to develop
a methodology to update the parameters of the
hazard model as new information is collected.
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APPENDIX A. MATHEMATICAL

METHOD

1) Derivation of equation (22)　Let
ñím;j = ím Äíj．

Equation(22)

=
Z Z

0
ÅÅÅ

Z ZÄ
PjÄ3

m=i
zm

0

jÄ1Y
m=i

ím

exp(ÄíjZ Ä
jÄ2X
m=i

ñím;jzm)
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Z ZÄPjÄ2
m=i

zm

0
exp(ÄñíjÄ1;jzjÄ1)dziÅÅÅdzjÄ1

= Ä 1
ñíjÄ1;j

Z Z

0
ÅÅÅ

Z ZÄPjÄ3
m=i

zm

0

jÄ1Y
m=i

ím

exp(ÄíjÄ1Z) exp(Ä
jÄ2X
m=i

ñím;jzm +
jÄ2X
m=i

ñíjÄ1;jzm)

dziÅÅÅdzjÄ2

+
1

ñíjÄ1;j

Z Z

0
ÅÅÅ

Z ZÄ
PjÄ4

m=i
zm

0

jÄ1Y
m=i

ím

exp(ÄíjZ) exp(Ä
jÄ3X
m=i

ñím;jzm)Z ZÄPjÄ3
m=i

zm

0
exp(ÄñíjÄ2;jzjÄ2)dziÅÅÅdzjÄ2

by arranging the årst part，

Ä 1
ñíjÄ1;j

Z Z

0
ÅÅÅ

Z ZÄPjÄ3
m=i

zm

0

jÄ1Y
m=i

ím

exp(ÄíjÄ1Z) exp(Ä
jÄ2X
m=i

ñím;jÄ1zm)dziÅÅÅdzjÄ2

= Ä íjÄ1ñíjÄ1;j

Z Z

0
ÅÅÅ

Z ZÄPjÄ3
m=i

zm

0

jÄ2Y
m=i

ím

exp(ÄíjÄ1Z Ä
jÄ2X
m=i

ñím;jÄ1zm)dziÅÅÅdzjÄ2

= Ä íjÄ1ñíjÄ1;j
ôijÄ1

and for the second part，

Ä 1
ñíjÄ1;jñíjÄ2;j

Z Z

0
ÅÅÅ

Z ZÄ
PjÄ4

m=i
zm

0

jÄ1Y
m=i

ím

exp(ÄíjZ) exp(Ä
jÄ3X
m=i

ñím;jzm)h
expfÄñíjÄ2;j(Z Ä

jÄ3X
m=i

zm)g Ä 1
i
dziÅÅÅdzjÄ3

= Ä íjÄ1íjÄ2
ñíjÄ1;jñíjÄ2;j

ôijÄ2

+
1

ñíjÄ1;jñíjÄ2;j

Z Z

0
ÅÅÅ

Z ZÄPjÄ4
m=i

zm

0

jÄ1Y
m=i

ím

exp(ÄíjZ) exp(Ä
jÄ3X
m=i

ñím;jzm)dziÅÅÅdzjÄ3

Thus, ôij becomes

ôij = Ä íjÄ1ñíjÄ1;j
ôijÄ1 Ä íjÄ1íjÄ2

ñíjÄ1;jñíjÄ2;j
ôijÄ2 ÄÅÅÅ

+
jÄ1Y

m=i+1

1
ñím;j

Z Z

0

jÄ1Y
m=i

ím exp(ÄíjZ)

exp(Äñíi;jzi)dzi

= Ä
jÄ1X
k=i+1

jÄ1Y
m=k

ím
ñím;j

ôik

Ä
jÄ1Y
m=i

ím
ñím;j

fexp(ÄíiZ)Ä exp(ÄíjZ)g

= Ä
jÄ1X
k=i+1

jÄ1Y
m=k

ím
ñím;j

ôik

Ä
jÄ1Y
m=i

ím
ñím;j

ôii +
jÄ1Y
m=i

ím
ñím;j

exp(ÄíjZ)

= Ä
jÄ1X
k=i

jÄ1Y
m=k

ím
ñím;j

ôik +
jÄ1Y
m=i

ím
ñím;j

exp(ÄíjZ)

Furthermore by considering ôi;i = exp(ÄíiZ),
the next equation is obtained by the equation(19)

ôii+1 =
íi
ñíi;i+1

fôii + exp(Äíi+1Z)g

Now, ôij(i = 1;ÅÅÅ; J Ä 1; j = i;ÅÅÅ; J Ä 1) is a
linear combination of ôi;i; ôi;i+1;ÅÅÅ; ôi;jÄ1, so the
above equation can be expressed as

ôi = ÄôiAi +Ci
However, ôi = (ôi;i; ôi;i+1;ÅÅÅ; ôi;JÄ1).(J Ä i) Ç
(J Ä i) order matrix is expressed by0BBBBB@

0 íi
ñíi;i+1

íiíi+1
ñíi;i+2ñíi+1;i+2

ÅÅÅ QJÄ2
m=i

ím
ñím;JÄ1

0 0 Ä íi+1
ñíi+1;i+2

ÅÅÅ QJÄ2
m=i+1

ím
ñím;JÄ1

...
...

...
. . .

...
0 0 ÅÅÅ ÅÅÅ 0

1CCCCCA
For ãi(p) = i + p Ä 1，ãj(q) = i + q Ä 1，the
component (p; q) of Ai becomes

Ai(p; q) =

8<: Qãj(q)Ä1
m=ãi(p)

ím
ñím;ãj(q)

when p < q

0 p ï q
and for (J Ä i)th order vector, Ci for the element
q becomes

Ci(q) =
ãj(q)Ä1Y
m=i

ím
ñím;ãj(q)

exp(Äíãj(q)Z)

Let Bi be the inverse matrix of Ai + E，so for
the component (p; q):

Bi(p; q) =

( Qãj(q)Ä1
m=ãi(p)

ím
ñím+1;ãi(p)

when p î q
0 p > q

Thus，ôi = CiBi and

ôij =
JÄiX
l=1

Ci(l)Bi(l; j Ä i+ 1)
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=
jÄi+1X
l=1

iÄ2+lY
m=i

ím
ñím;iÄ1+l

exp(ÄíiÄ1+lZ)

Å
jÄ1Y

m=iÄ1+l

ím
ñím+1;iÄ1+l

=
jX
k=i

kÄ1Y
m=i

ím
ñím;k

jÄ1Y
m=k

ím
ñím+1;k

exp(ÄíkZ)

2)Time adjustment prove　Here, it is shown
that the Markov transition probability matrix
obtained by means of the exponential hazard
model satisåes the time adjustment conditions.
When n = 1 is self contained. When n =
k Ä 1, it is assumed Ö ((k Ä 1)Z) = fÖ (Z)gkÄ1．
Thus，ôii(kZ) = ôii((k Ä 1)Z)ôii(Z), ôij(kZ) =Pj
h=iôih((k Ä 1)Z)ôhj(Z)．
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